

NVIDIA QUADRO RTX

NVIDIA TURING GPU

Turing SM

Up to 16 TFLOPS + 16 TIPS Concurrent FP & INT Execution Unified L1 Cache Variable Rate Shading

Tensor Cores

Up to 130 TFLOPS FP16 Up to 260 TOPS INT8 Up to 500 TOPS INT4

Memory

6MB L2 Cache Up to 384-bit GDDR 6 @ 14Gbps Up to 672 GB/sec **RT Cores** Up to 10 Giga Rays/sec Ray Triangle Intersection BVH Traversal

NVLink Up to 100 GB/sec GPU-GPU Memory Access

2 🐼 **NVIDIA**.

Display Native HDR 8K DisplayPort Virtual Link

Video HEVC 8K Real Time Encode 25% Improved Bitrate

TURING FOR PROFESSIONAL WORKFLOWS

Brings real-time ray tracing to professional graphics workflows

Enables AI-augmented tools and applications

Powers next-generation of graphics, VR, and GPU compute workflows

ADVANCED SHADERS

WHAT IS RAY TRACING?

- Models the behavior of light in the scene
- Produces accurate model of the real world photorealistic images
- Computationally intensive

TURING RT CORES

Hardware Accelerated Tracing of Rays Through the Scene

- Real-time ray tracing in the application viewport allows for instantaneous feedback and review iteration
- Accelerated offline rendering lets you create photorealistic images faster
- Make better decisions, faster, more iterations without impacting schedules

TURING TENSOR CORES

Next Generation of Hardware Accelerated Deep Learning

- Turing Tensor Cores deliver fast inferencing performance and support additional precision modes, which boosts inferencing workload performance
- Bring new techniques like Deep learning Super Sampling (DLSS) to your workstation via hardwareaccelerated deep learning enabled tools and applications

TURING ADVANCED SHADERS

Mesh Shading

Enables developers to eliminate CPU draw call bottlenecks and use more efficient algorithms to draw triangles.

Mesh Shading to render thousands of objects in real time

Variable Rate Shading (VRS)

More control over pixel shading rate; efficient for effects like motion, blur, foveated shading.

Foveated Shading

Texture Space Shading

Decouples shading from screen space, improving shading efficiency & reuse.

Shading Re-Use

Multi-View Rendering (MVR)

Extension of Single Pass Stereo rendering multiple views in a single pass with unique view origin positions or view directions.

Advanced Graphics Technology

- Create more objects per scene with more flexible control over the level of detail
- Finer control over shading allows for more dynamic geometry manipulation, letting developers deploy new, optimized algorithms
- Enhancements to single-pass stereo provide greater flexibility and support for new generation of HMDs

TURING VR

VISUAL QUALITY

ULTRA WIDE FIELD OF VIEW

Turing GPU features enhance VR

Key Benefits:

- Optimize resolutions with variable rate shading and foveated rendering
- Multi-view rendering provides a wider field of view and support for next-gen HMDs & displays
- RT Cores enable accurate acoustic simulations to deliver more realistic virtual environments
- Easier set up with VirtualLink[™] single cable connection

ACOUSTIC SIMULATION

EASY SETUP

QUADRO RTX VIRTUALLINK[™] *

VirtualLink is an industry standard Alternate Mode of USB Type-C[™] designed to deliver the power, display, and data required to power VR headsets through a single USB Type-C connector.

- 4 lanes HBR3 DisplayPort
- USB 3.1 Gen2 SuperSpeed
- 27 W power
- Industry consortium includes: NVIDIA, VALVE, Oculus, AMD, Microsoft
 - virtuallink.org for more details

*In preparation for the emerging VirtualLink standard, Turing GPUs have implemented hardware support according to the "VirtualLink Advance Overview". To learn more about VirtualLink, please see http://www.virtualLink.org.

QUADRO RTX NVLINK

0

R

High-speed GPU interconnect

- Scaled memory and performance lets you split workloads efficiently across two GPUs, sharing up to 96 GB of memory capacity
- Increased bandwidth enables new, advanced SLI display topologies that were previously impossible with PCIe-based solutions

QUADRO NVLINK

Quadro Family NVLink Bridges

Quadro RTX boards only require 1 NVLink bridge

Quadro GPU	NVLink Bridge	Slot Configuration	Bandwidth	Bridges Required
Quadro	Quadro RTX NVLink HB 2- Slot	2-Slot	2-Slot Up to 100	
RTX 8000 RTX 6000	Quadro RTX NVLink HB 3- Slot	3-Slot	GB/s	I
Quadro	Quadro RTX NVLink 2-Slot	2-Slot	Lip to 50 GB/c	1
RTX 5000	Quadro RTX NVLink 3-Slot	3-Slot	ομ το 30 αυ/ s	I
Quadro GV100	NVLink GV100	2-Slot	Up to 200 GB/s	2
Quadro GP100	NVLink GP100	2-Slot	Up to 160 GB/s	2

Bridges are product specific, not cross-compatible

GV100

GP100

GV100/GP100 boards require 2 NVLink bridges

QUADRO RTX FOR AI

Quadro RTX ideal for AI augmented professional applications and professional AI inferencing deployments

Pro Applications Inferencing

Aggregation Inferencing At-The-Edge

QUADRO RTX FOR AI - NGX

NGX AI-based features

AI Slow-Motion

The NVIDIA NGX SDK makes it easy for developers to integrate AI features into their applications with pretrained neural networks. NGX provide AI-augmented features for video and image processing including:

• Al InPainting

Allows the removal of existing content from images and replaces it with realistic computer-generated alternatives.

• Al Up-Res

Increases the resolution of an image or video by 2x, 4x or 8x using AI to create new pixels by interpreting the image & intelligently placing data in the new image.

• DLSS: (Deep Learning Super Sample) Removes jagged lines to smooth images, producing a higher quality image faster than by using other techniques.

• AI Slow-Motion

Inserts interpolated frames into a video stream to provide smooth, slow-motion video

Details on the NGX SDK: developer.nvidia.com/rtx/ngx

QUADRO RTX VALUE FOR INDUSTRIES

QUADRO RTX

QUADRO

RTX 6000

RTX 5000

RTX 4000

RTX 4000

QUADRO RTX 6000 KEY SPECIFICATIONS

GPU Architecture	Turing
CUDA Cores	4608
RT Cores	72
Tensor Cores	576
Memory Size	24 GB GDDR6
Memory BW	Up to 672 GB/s
NVLink	2-way (2 & 3slot) 100 GB/s bidirectional
Display Support	4x DP + 1x VirtualLink
VR Ready	Yes
VirtualLink™	Yes
Advanced Display	SYNC 2
Board Power	Total Board Power: 295W Total Graphics Power: 260W
Power Connectors	1x 8-pin, 1x 6-pin PCle

UPGRADING TO RTX 6000

	RTX 6000	P6000	M6000 24GB	Benefit
Architecture	Turing	Pascal	Maxwell	Latest generation NVIDIA GPU technology
CUDA Cores	4608	3840	3072	Fast graphics and compute performance
RT Cores	72	-	-	GPU accelerated ray tracing for interactive and batch rendering
Tensor Cores	576	-	-	GPU accelerated Deep Learning for AI-augmented applications
Memory	24 GB GDDR6 Up to 672 GB/s	24 GB GDDR5X Up to 432 GB/s	24 GB GDDR5 Up to 317 GB/s	Smooth interaction with complex models, faster render & compute performance
NVLink	2-way	-	-	Scales memory & compute up to 48 GB for largest renders, models and datasets
VR Ready	Multi-View Rendering	Single pass stereo	Yes	Latest generation of GPU accelerated immersive VR technology
VirtualLink	Yes	-	-	Simplified single cable VR HMD connectivity

RTX 6000 UP TO 2X FASTER THAN PREVIOUS GENERATION*

Test run on a workstation with Xeon Gold 6154 3GHz (3.7 GHz turbo). 64GB RAM, Windows 10 64-bit, NVIDIA driver version 341.49 & 411.61. Performance testing completed with publicly available SPECviewperf 13 benchmark information.

*based on M6000 SPECviewperf 13 performance

RTX 6000 MORE THAN 3X FASTER THAN COMPETITION*

				Ŀ.,	
_					

Test run on a workstation with Xeon Gold 6154 3GHz (3.7 GHz turbo). 64GB RAM, Windows 10 64-bit, NVIDIA driver version 411.61, AMD driver version 18.Q4. Performance testing completed with publicly available SPECviewperf 13 benchmark information.

*based on Radeon Pro WX9100 SPECviewperf 13 performance

QUADRO RTX 5000 KEY SPECIFICATIONS

GPU Architecture	Turing
CUDA Cores	3072
RT Cores	48
Tensor Cores	384
Memory Size	16 GB GDDR6
Memory BW	Up to 448 GB/s
NVLink	2-way (2 & 3slot) 50 GB/s bidirectional
Display Support	4x DP + 1x VirtualLink
VR Ready	Yes
VirtualLink™	Yes
Advanced Display	SYNC 2
Board Power	Total Board Power: 265W Total Graphics Power: 230W
Power Connectors	1x 8-pin, 1x 6-pin PCle

UPGRADING TO RTX 5000

	RTX 5000	P5000	M5000	Benefit
Architecture	Turing	Pascal	Maxwell	Latest generation NVIDIA GPU technology
CUDA Cores	3072	2560	2048	Fast graphics and compute performance
RT Cores	48	-	-	GPU accelerated ray tracing for interactive and batch rendering
Tensor Cores	384	-	-	GPU accelerated Deep Learning for AI-augmented applications
Memory	16GB GDDR6 Up to 448 GB/s	16 GB GDDR5X Up to 288 GB/s	8 GB GDDR5 Up to 211 GB/s	Smooth interaction with complex models, faster render & compute performance
NVLink	2-way	-	-	Scales memory & compute up to 48 GB for largest renders, models and datasets
VR Ready	Multi-View Rendering	Single pass stereo	Yes	Latest generation of GPU accelerated immersive VR technology
VirtualLink	Yes	-	-	Simplified single cable VR HMD connectivity

RTX 5000 MORE THAN 2X FASTER THAN PREVIOUS GENERATION*

Test run on a workstation with Xeon Gold 6154 3GHz (3.7 GHz turbo). 64GB RAM, Windows 10 64-bit, NVIDIA driver version 341.49 & 411.61. Performance testing completed with publicly available SPECviewperf 13 benchmark information.

*based on M5000 SPECviewperf 13 performance

RTX 5000 UP TO 2X FASTER THAN COMPETITION*

Test run on a workstation with Xeon Gold 6154 3GHz (3.7 GHz turbo). 64GB RAM, Windows 10 64-bit, NVIDIA driver version 411.61, AMD driver version 18.Q4. Performance testing completed with publicly available SPECviewperf 13 benchmark information.

*based on Radeon Pro WX8200 SPECviewperf 13 performance

QUADRO RTX 4000 KEY SPECIFICATIONS

GPU Architecture	Turing
CUDA Cores	2304
RT Cores	36
Tensor Cores	288
Memory Size	8 GB GDDR6
Memory BW	Up to 416 GB/s
NVLink	N/A
Display Support*	3x DP + 1x VirtualLink
VR Ready	Yes
VirtualLink™	Yes
Advanced Display	SYNC 2
Board Power	Total Board Power: 160W Total Graphics Power: 125W
Power Connectors	1x 8-pin

UPGRADING TO RTX 4000

	RTX 4000	P4000	M4000	Benefit
Architecture	Turing	Pascal	Maxwell	Latest generation NVIDIA GPU technology
CUDA Cores	2304	1792	1664	Fast graphics & compute performance
RT Cores	36	-	-	GPU accelerated ray tracing for interactive and batch rendering
Tensor Cores	288	-	-	GPU accelerated Deep Learning for AI-augmented applications
Memory	8GB GDDR6 Up to 416 GB/s	8 GB GDDR5 Up to 288 GB/s	8 GB GDDR5 Up to 192 GB/s	Smooth interaction with complex models, faster render & compute performance
VR Ready	Multi-View Rendering	Single pass stereo	No	Latest generation of GPU accelerated immersive VR technology
VirtualLink	Yes	-	-	Simplified single cable VR HMD connectivity

RTX 4000 UP TO 3X FASTER THAN PREVIOUS GENERATION*

Test run on a workstation with Xeon Gold 6154 3GHz (3.7 GHz turbo). 64GB RAM, Windows 10 64-bit, NVIDIA driver version 341.49 & 411.61. Performance testing completed with publicly available SPECviewperf 13 benchmark information.

*based on M4000 SPECviewperf 13 performance

RTX 4000 1.8X FASTER THAN COMPETITION*

Test run on a workstation with Xeon Gold 6154 3GHz (3.7 GHz turbo). 64GB RAM, Windows 10 64-bit, NVIDIA driver version 411.61, AMD driver version 18.Q4. Performance testing completed with publicly available SPECviewperf 13 benchmark information.

*based on AMD WX7100 SPECviewperf 13 geomean score

RTX 4000 THE BEST PROFESSIONAL GRAPHICS CARD UNDER \$1000

	_

Test run on a workstation with Xeon Gold 6154 3GHz (3.7 GHz turbo). 64GB RAM, Windows 10 64-bit, NVIDIA driver version 411.61, AMD driver version 18.Q4. Performance testing completed with publicly available SPECviewperf 13 benchmark information.

*based on AMD WX8200 SPECviewperf 13 geomean score

